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A finite-difference numerical method for the solution of the unsteady flow of a 
viscous incompressible fluid through axisymmetric circular ducts of variable axial 
geometry is developed and applied to the flow in a spherical-cavity geometry 
approximating the human aortic valve. The presence and motion of the valve 
leaflets are considered only as long as they can be assumed to present negligible 
impedance to the flow. The numerical solution is based on the vorticity/stream- 
function approach, and is carried out for the systolic acceleration phase of the 
heart beat, A hybrid-mesh design consisting of a fine cell structure in the region 
close to the solid walls and a coarser grid in the core region is used. An experi- 
mental flow-visualization study in an acrylic model of the spherical cavity shows 
good agreement with the numerical simulation. An early separation of flow 
occurs at the entrance to the cavity, and an annular eddy grows in the wake until 
i t  occupies most of the cavity. The use of the hybrid mesh also makes possible the 
simulation of fine secondary-flow features in the cavity under peak-flow condi- 
tions. 

1. Introduction 
Regions of pronounced axial variation in the cardiovascular flow geometry such 

as bends, bifurcations, aneurysms and valves are predominant sites of vascular 
pathogenesis, and haemodynamic factors are believed to play a significant, if not 
dominant, aetiological role (Texon 1957; Fry 1968; Wessler & Yin 1969; Young 
& Shih 1969). In  particular, pathological conditions in blood vessels are encoun- 
tered most frequently where flow separation can occur. Various contradictory 
theories associating low- or high-stress regions with vascular pathologies may be 
resolved and a better understanding gained of the true nature and manner of 
haemodynamic influence through a thorough analysis of flow separation in pul- 
satile flow. Such an analysis can also provide information about the role of the 
altered flow following separation in governing functional mechanisms such as 
heart-valve opening and closure (Bellhouse & Talbot 1969). In  the present study, 
a method for the detailed numerical simulation of unsteady separated flows in 
regions of circular duct variations is developed and applied to simulate the 
accelerating flow of blood through a spherical-cavity geometry approximating 
the human aortic valve. 

7-2 
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Aorta 

FIQURE 1. Axisymmetric geometry of aortic valve model. 

The tricuspid aortic valve is located a t  the orifice where the aorta emerges from 
the left ventricle. At the site of the valve, the aortic root bulges to form the sinuses 
of Valsalva behind the three valve leaflets. The leaflets are thin membranes of 
neutral buoyancy in blood. Figure 1 shows an idealized axisymmetric geometry 
of the valve in the closed position. It represents an averaged model based on 
measurements made in about thirty silicone moulds cast in human aorta for 
pressures of 0-100 mmHg (Swanson & Clark 1974). In  the model geometry, the 
thick base of the leaflet attachment to the valve ring at the inlet corner of the 
spherical cavity is approximated by a small but sharp protrusion of the wall into 
the flow field. The corner at the downstream end is smooth. The aortic diameter 
downstream of the cavity is slightly smaller than that upstream. The inputventri- 
cular flow pulse is shown in figure 2 along with a sinusoidal delivery pulse for 
comparison. The present work is a numerical analysis of incompressible laminar 
flow starting from rest and accelerating sinusoidally to peak systole ( t  = it,) 
through the modelled axisymmetric, rigid valve geometry. 

Laminar flows through rectangular cavities, over steps facing downstream in a 
channel, and through sudden conduit expansions have been studied both experi- 
mentally and numerically, but no systematic study of unsteady flow through 
spherical cavities in circular ducts has previously been performed. In  the num- 
erical simulation of such flows, proper treatment of the boundaries is of crucial 
importance. A particular contribution of this work is a general treatment of the 
solid no-slip boundaries. This treatment uses a hybrid system of finite-difference 
meshing: a coarse cylindrical primary mesh transformed to permit radial com- 
pression of the grid away from the centre-line occupies the main flow field and 
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FIUURE 2. Ventricular flow pulse. 

maintains an overall economy of computer usage; in the region close to the wall 
where the gradients are large, better resolution is obtained by using fine secondary 
meshes with co-ordinate systems chosen to match the boundary. This method is 
applicable to duct flows with almost arbitrary axial variations in geometry as long 
as such variations can be expressed analytically in a piecewise-continuous 
manner in terms of orthogonal curvilinear co-ordinate systems. The disconti- 
nuities may include sharp corners. For example, the method is of direct relevance 
to the study of unsteady laminar flow within arterial aneurysms, stenoses, and 
other regions of sudden geometrical vessel variations. 

This numerical analysis is first applied to flow in the geometry of figure 1 
during the early stages of systolic acceleration, when the leaflets present neg- 
ligible impedance to the flow. The motion of the leaflets during this early stage of 
valve opening is traced numerically. During the remainder of the acceleration 
phase, the computations apply only to the case of the cavity flow with the leaflets 
not present. An experimental flow-visualization study has been carried out in an 
acrylic model under conditions approximately similar to those of the numerical 
model. The numerical solution remains stable throughout the acceleration phase 
and the corresponding flow closely resembles the observed flow in the physical 
model. The results provide detailed insight into the development of a captive 
annular vortex in the spherical cavity. There is also evidence of finer secondary 
separation and vortices close to the wall, which play a role in controlling the 
growth and position of the main vortex as peak-flow conditions are approached. 
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The flow solution at peak systole fits the visual observation of the corresponding 
flow in the real valve (Bellhouse & Talbot 1969) better than any analytical or 
numerical solution to date. 

2. Previous work 
Leonard0 da Vinci correctly predicted that vortices would be formed in the 

sinuses (cavities) of the aortic valve and that they would affect the function of the 
valve (Keele 1952). Since the systolic acceleration phase lasts for only about 
Qs and valve opening takes place within the first 100 ma or so, experimental 
measurements of the detailed flow characteristics during this short time are not 
possible. Qualitative flow visualization in physical-model studies by Bellhouse 
& Talbot (1969) has shown, however, that “vortices are formed early in systole, 
reached maximum strength at peak systole, and persisted well into diastole ” 
Also, i t  was observed in the same study that near peak-flow conditions the vortex 
core was displaced from the cavity centre towards the downstream corner. 

The dynamic interaction between the moving boundaries of the valve and the 
three-dimensional flow field cannot be handled fully a t  this time even in detailed 
numerical studies. Peskin (1972) approached the problem by replacing the flex- 
ible valve leaflets and an elastic wall constrained to return to equilibrium follow- 
ing any disturbance “ by a field of force which is defined on the mesh points of a 
rectangular domain, and which is calculated from the configuration of the 
boundary ”. Computer limitations, however, restricted the maximum ReynoIds 
number at which stable numerical solutions could still be obtained to one or two 
orders of magnitude lower than those attained in the human aorta. Hung & 
Schuessler (1971) and Schuessler & Hung (1972) performed a numerical analysis 
of potential flow within a rigid axisymmetric valve geometry. Leaflet motion 
was adjusted to produce a desired pressure drop across the valve during opening. 
A cylindrical mesh system was employed in the entire flow field including the 
region near the curved walls. No vortex formation was obtained during valve 
opening. 

Laminar incompressible flows over cavities, abrupt steps and bluff bodies with 
splitter plates in their wakes have the following common features: boundary- 
layer growth upstream of the impending flow separation, separation of flow and 
its subsequent reattachment further downstream, a separation wake consisting 
primarily of a recirculating vortex with possible secondary vortices, and a free 
shear layer of concentrated vorticity along the separation streamline. The energy 
to sustain the wake flow is derived from the main flow itself and is transferred 
across the free shear layer. The size of the wake region generally increases with the 
free-stream Reynolds number (Macagno & Hung 1967; Mueller & O’Leary 
1970). 

Batchelor (1956) considered steady laminar flow with closed streamlines at 
high Reynolds number and showed that viscous forces are concentrated in shear 
layers outside the main recirculating eddy and produce constant vorticity within 
the eddy, the magnitude of the vorticity depending on the conditions of the exter- 
nal flow. Burggraf (1966), Pan & Acrivos (1967) and others obtained steady-flow 
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solutions for two-dimensional rectangular cavities at low Reynolds number, 
and Gosman et al. (1969) considered the same flow at Reynolds numbers up to 
lo4. Mehta & Lavan ( 1969) and Donovan (1 970) carried out corresponding solu- 
tions for the unsteady case. Tani (1968), Roach & Mueller (1970) and, most 
recently, Honji (1975) studied flow down a rearward-facing step. Honji’s experi- 
ments demonstrated clearly the existence of aecondary vortices which formed 
when the recirculating flow behind the step itself separated from the base. 
Macagno & Hung (1967) investigated flow in a sudden axisymmetric conduit 
expansion numerically and experimentally, and Back & Roschke (1972) per- 
formed similar experiments. Bearman (1 965) observed the presence of secondary 
vortices in experimental studies of separated flow behind a bluff body fitted with 
a splitter plate in the wake. Thoman & Szewczyk (1969) used a hybrid cell struc- 
ture in the numerical simulation of flow around a cylinder and obtained secondary 
vortices in the wake. Honji & Taneda (1969) made similar observations experi- 
mentally. In  a more recent experiment by Scherer (1973), steady flow through 
axisymmetric glass models of aneurysms (spherical cavities) was studied by flow 
visualization and surface-pressure measurements. The principal observation was 
a clear separation of flow for each of three cavity-to-duct radius ratios. The 
separation occurred at the bulb entrance, and a captive vortex, whose size 
depended on the inlet Reynolds number, occupied the cavity. 

3. Mathematical formulation 
Basic equations 

Blood may be assumed to be an incompressible Newtonian fluid in the flow 
range considered. For the laminar axisymmetric flow of such a fluid, the flow 
equations are conveniently expressed in terms of a transport equation for vor- 
ticity w and a coupled equation for the Stokes stream function $. The vorticity- 
transport equation is 

where w = V x v = w e ,  8 is the azimuthal co-ordinate and v is the kinematic 
viscosity. The stream-function equation has the form 

a o p t  = V x ( v x w )  +YV%, ( 1 )  

where L, is a linear second-order partial differential operator, the precise form of 
which depends on the choice of co-ordinate system, for example the forms in (6) 
and (10) below, and r is the radial distance from the axis of symmetry. 

The nonlinear term V x (v x o) in (1) may also be written as (o .Vv- v .  V o ) .  
In  the latter form, the first term (o. Vv) represents the rate of vortex-line stretch- 
ing, and the second term (v. V o )  represents the rate of vorticity convection. The 
stretching of vortex lines is most pronounced in the vicinity of abrupt changes in 
the flow geometry. When an accelerating flow starts from rest, a, continuous 
generation of vorticity at the solid walls is initiated in direct response to the need 
to satisfy the no-slip condition. Subsequently, molecular diffusion of this vorti- 
city into the flow field causes boundary-layer growth. Vortex-line stretching and 
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FIGURE 3. Regions of the hybrid-mesh system. P ,  primary region in which radial co- 
ordinate transformation Y = Ra is made; S,, upstream secondary cylindrical region; S,, 
upstream secondary toroidal region ; S,, secondary spherical region; S,, downstream 
Secondary toroidd region ; S,, downstream secondary cylindrical region. (All lengths, 
e.g. R, 2, p, are normalized with respect to inlet radius a. ) 

convection feature increasingly in the redistribution of vorticity as the flow 
accelerates, and, at high Reynolds numbers, their effects dominate viscous damp- 
ing, ultimately leading to physical as well as numerical instabilities. 

The accurate determination of the wall vorticity is of considerable importance 
because vorticity is generally concentrated in the shear layers adjacent to the 
solid walls. It has been demonstrated that errors introduced in computations of 
the boundary-layer vorticity do not decay rapidly away from the boundary and 
often dominate truncation errors (Cheng 1969). In the core region, on the other 
hand, gradients of the flow variables are generally small. In view of the need both 
for accuracy and for economy of computational resources, it is therefore most 
desirable to design the finite-difference mesh such that mesh cells near the solid 
walls are small and locally aligned with the wall, while those in the core region are 
relatively coarser and parallel to the axis of symmetry. To attain these features, 
the region of flow is divided into a primary region and a number of secondary 
regions, as shown in figure 3. A separate axisymmetric co-ordinate system is 
selected for each region. The primary region consists of a cylindrical system with 
the following transformation of the radial co-ordinate R ( = r/t) : 

Y = Ra. (3) 

The effect of the transformation is to make equal intervals A Y in the transformed 
plane ( Y ,  2) correspond to non-uniform intervals AR (proportional to 1/R) in the 
real plane (R, 2). Thus the desired effect of radial compression of the mesh as the 
walls are approached is achieved while a uniform radial mesh size (AY) is re- 
tained in the computations. The secondary regions consist of cylindrical systems 
along the straight inlet and outlet walls, a spherical system along the curved sinus 
wall, and toroidal systems for both corner regions. The co-ordinatesp and q5 of the 
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spherical and toroidal systems are defined with respect to local centres: 0, for 
the spherical system, and ( I2  and 0, for the upstream and downstream toroidal 
systems respectively. 

In  the non-dimensionalization of the flow equations, the inlet radius a and 
beat period T are used as the reference length and time. The mean systolic velocity 
averaged over the inlet cross-section is taken as the reference velocity (E), 
and is computed from 

where Qf is the total systolic flow volume. The vorticity o and stream function $ 
are normalized using (E)/a and a2 {G) respectively, and are then denoted by 7 
and 5. In  the primary system ( Y ,  0, Z), the normalized vorticity-transport 
equation is 

(z) = Qf/na2t., (4) 

and the normalized stream-function equation is 

In  the above equations, Y and 2 are dimensionless co-ordinates, t' is the dimen- 
sionless time, and U and W are the dimensionless velocity components in the 
Y and 2 directions respectively. Two independent characteristic system para- 
meters are identified: the Strouhal number Nstr = a/(%) T and the pulsatile 
Reynolds number mR = a2/vT. A Reynolds number for the mean flow may also 
be defined as 

NR = (3)afV = #R/Natr. 

By the definition of the stream function, 5( Y ,  8) will satisfy the continuity 
equation with the velocity components given by 

u = Y+ag/aZ, w = -2aEJaY. (7) 

7 = aupz - 2 Y O w p Y .  (8) 

The scalar component of vorticity is 

Substituting Ra = Y and 2RaR = a Y in the above equations, the correspond- 
ing equations for use in the secondary cylindrical systems may be obtained with 
respect to the co-ordinates R and 2. In  toroidal co-ordinates, the equations are 
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and 1 8  i avp 7 = -- (pv,) --- 
Pap P a$ ' 

where Vp and V, are the normalized velocity components in the p and $ directions 
respectively. The local co-ordinates (p, $) are related to the primary co-ordinates 
(R, 2) by 

R = Roo+psin$, 2 = Zoo+pcos$, 

where (B,, Zoo) denotes the location of the local origin of the toroidal system with 
respect to the primary origin. 

The spherical system is a special case of the general toroidal system in the limit 
Boo +- 0. Thus (9)-( 12) also hold for the spherical system with R, = 0, and with 
p and $ being appropriately referred to the local origin of the spherical system. 

Flow input 
The instantaneous flow rate in the system (figure 2 )  is taken as 

&(t )  = &maxsin(d/t,), t < t,, (13) 

where the peak systolic flow is &,,, = &nQf/t8. In  the numerical model of the 
heart valve, the following input values are used: 

a = 1 cm, Qf = 50 cm3, T = 8 s (based on 72 heartbeats per minute) 

t, = S S  ( =  0.42'). and 

Initial and boundary conditions 
Initially, the flow is considered to be at rest throughout the flow field. The velocity 
components U ,  W, V, and V, as well as and 7 are therefore zero at t' = 0 in each 
co-ordinate system. In the primary and secondary cylindrical systems, the flow 
at the inlet and exit cross-sections is assumed to  be purely a.xial for all times such 
that (see figure 3) 

u = 0 = au/az at z = O,Z,. 

Using a subscript w to denote values at the wall, we choose & = 0 arbitrarily 
as a reference stream-function value. Along the straight sections of the solid 
walls, 

must be satisfied. Along the curved sections of the walls, including the corners, 
Uw = O = W,, qw = -aW/aR (14) 

(V,), = 0 = (V,,,, r w  = av,/ap (16)  

must be satisfied. Thus vorticity at the sharp corner 0, is multi-valued, being a 
function of the angle $ of the upstream toroidal system. 

The centre-line of the valve geometry is a streamline for which $o = &(t)/2n, 
and, by symmetry, U = 0 = a W/aR and 7 = 0 a t  R = 0. 

One final set of conditions must be satisfied as a consequence of the introduc- 
tion of a hybrid-mesh system: at every point of the primary-secondary and 
secondary-secondary fluid interfaces, the values of ( and 7 must match. 

A complete determination of the entire flow field requires the simultaneous 
solution of the flow problems associated with all the co-ordinate systems, as 
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stated above. Apart from the developing flow pattern itself, a quantity of par- 
ticular interest in haemodynamic analysis is the magnitude of the shear stress 
T along the solid walls. It can be shown that the wall shear is directly proportional 
to the wall vorticity according to the relation 

Corresponding to the chosen flow inputs, the valve inlet diameter, and the 
physical properties of blood (density of 1.05 g/cm3, Y = 0.04 S), the following 
values are obtained for the characteristic velocity and the dimensionless para- 
meters : 

(5) = 47*7cm/s, N R  = 1193.7, iVR = 30.0, Nst, = 0.025. 

At peak flow, the average inlet flow velocity is 75 cmls, which corresponds to a 
Reynolds number of 1875 based on the inlet radius. 

4. Numerical analysis 
The flow of blood through the aortic-valve geometry is highly unsteady and 

becomes very nonlinear as peak systolic flow rate is approached. The only prom- 
ising method for treating such a flow is through finite-difference computation. 
The numerical procedures outlined in this paper have been described in much 
greater detail by Gillani ( 1974). The quasi-linear parabolic equations of vorticity 
transport, e.g. ( 5 )  or (9), and the linear elliptic equations for the stream function, 
e.g. (6) or (lo), in each of the co-ordinate systems used for the problem are recast in 
finite-difference form. The parabolic equations are solved in the interior of the 
flow field by explicitly marching forward in time starting from the initial condi- 
tion of rest. At each new time level, their solutions yield the source terms for use 
in the stream-functionequations. These elliptic equationsare thensolved either by 
an explicit iterative method based on the optimized successive over-relaxation 
technique (primary and secondary spherical systems), or by a direct method 
based on a modified Gaussian elimination technique (secondary cylindrical and 
toroidal systems). In  the above solutions, the matching of the values of the flow 
variables at the interfaces between the various sub-regions of the flow is also 
accomplished. The stream-function solutions in the various co-ordinate systems 
are then used to evaluate the velocity components according to difference approx- 
imations to (7), (11) and their counterparts in the secondary cylindrical and 
spherical systems. Since the secondary systems are chosen to run locally parallel 
to the solid walls, the wall vorticity, whose definition uses the gradient of the 
velocity component parallel to the wall [cf. (14) and (15)], is easily determined. 
Furthermore, this evaluation of the wall vorticity is quite accurate owing to the 
fine structure of the secondary meshes. FinaIly, the magnitude of the wall shear 
stress is calculated using (16). 

For a given system of differential equations, many different sets of difference 
schemes can be formulated. Each set represents a different approximation. The 
particular choice of difference scheme and the method of its solution, as well as 
the choice of time interval and the finite-difference mesh, will, in general, deter- 
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.3 a. j =  1 

FIUURE 4. The hybrid system of finite-difference meshes. The primary mesh is ahown 
before radial transformation. 

mine the consistency, accuracy, numerical stability and convergence of the 
solution. The practical considerations in making these choices are mostly based 
on available computer time and storage. 

System of finite-digereme meshes 

The primary emphasis in this paper is on the practical application of numerical 
methods to the problem of separated unsteady viscous flow through circular 
ducts of complex axial geometries. A central thesis of this paper is that proper 
treatment of the boundary-region flow is essential to the realistic simulation of 
the separated flow. Of particular importance is the treatment of the flow in the 
vicinity of the corners at the two ends of the spherical cavity. In  response to 
these considerations, the choice of he-mesh systems running parallel to the solid 
walls was made. Considerations of available computational resources led to the 
choice that the fine grid be restricted to the boundary region only, and that a 
primary and coarser grid be established in the remaining bulk of the flow region 
and be aligned with the central axis of flow. 

The complete hybrid system of meshes occupying the primary and the second- 
ary regions of the real flow field is shown in figure 4. In  the primary region, a 
30 x 48 mesh provides uniform spacing axially and a progressively decreasing 
spacing radially away from the axis. In  the transformed Y ,  2 plane ( Y = B2), the 
mesh cells are identical squares with A Y = A 2  = h. Since there exists a one-to- 
one correspondence between the primary nodes in the real and the transformed 
planes, the nodal values of q and can be obtained from the solution of the trans- 
formed flow equations and then transferred directly to the corresponding nodes 
in the real plane. The subsequent matching of the variables along intra-system 
interfaces is always performed in the real geometry since all the secondary systems 
are defined in the real geometry. A number of primary nodes are located inside 
the secondary regions. Owing to the presence of the curved boundary, some of 
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R,=h, 

FIQURE 5. Close-up view of the secondary meshing around the downstream corner. The 
annular surface represented by the line WbB is a secondmy-seoondary interface. 

these primary nodes are irregular stars, that is, their distance from the solid wall 
is less than the normal primary mesh spacing in at least one co-ordinate direction. 
These nodes require special treatment in the numerical computations, as will be 
described later. 

The secondary grid lines run parallel and perpendicular to the solid walls. The 
secondary radial grid spacings, i.e. ARC in the cylindrical systems and Ap in the 
spherical and toroidal systems, are all equal and denoted by h, (figure 5) .  The 
secondary axial grid spacing is the same in the two cylindrical systems, and is 
denoted by kc = AZc. The angular grid spacings are in the spherical system, 
andAq5 ,andA&in the upstream and downstream toroidal systems, respectively. 
The numerical values of the primary and secondary mesh spacings are chosen as 

= 2*059", Aq5tu = 20.59', A& = 14.42". 

The choice of the time interval at' for an explicit scheme is generally restricted 
by considerations of numerical stability. Numerical instabilities may be of a 
static or a dynamic nature (Roach 1972a). In  the static case, the growth of 
errors is monotonic and due largely to the nature of the difference scheme itself. 
Static stability may be attained by restricting the maximum Reynolds number 
based on cell size. In  the dynamic case, the numerical solution oscillates about the 
true solution as the errors grow. Dynamic stability may be attained by restricting 
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the size of at'. For the vorticity-transport equation, the destabilizing effect of 
greatest concern is that due to the nonlinear terms of vortex-line stretching and 
convection. These effects are small near the solid boundaries except in the region 
downstream of the sharp corner, where the rates of both stretching and convec- 
tion of vortex lines are substantially enhanced. The nonlinear effects are most 
dominant, however, in the primary region where flow divergence takes place. For 
this reason, the restriction on at' is based on a stability criterion obtained for the 
primary system. Furthermore, corresponding to the choice of at' in this manner, 
it is necessary that the angular spacing A&, satisfy some appropriate condition to 
ensure stability in the region surrounding the sharp corner. It has been suggested 
by Gillani (1974), on the basis of trial and error, that A&, be chosen such that 
the average circumferential grid spacing in the secondary corner region be at 
least half of the corresponding grid spacings parallel to the wall in the neigh- 
bouring secondary regions. This condition is satisfied by the chosen value of 
A$h'. 

Finite-diflerence equations 
Finite-difference equations are presented only for the transformed primary 
system. The corresponding equations in the secondary meshes are of an analogous 
form. 

Accuracy and convergence are the principal goaIs in computational simulation 
of flow dynamics. At least for linear equations, a consistent finite-difference 
formulation and its stable solution are sufficient conditions for convergence, given 
arbitrary well-behaved initial conditions (Richtmeyer & Morton 1967). For the 
linear case, convergence will not depend on boundary conditions (O'Brien, 
Hymen & Kaplan 1951). For the quasi-linear case of the vorticity-transport 
equation, a mild strengthening of the stability criterion at a primary interior 
node based on local linearization of the equation is found to be sufficient to 
ensure a, stable solution. Accuracy may not always improve with a higher-order 
difference approximation. It is a matter of general experience, for example, that 
formulae claiming high orders of accuracy, e.g. O([8tl4), are often quite disap- 
pointingin practice (Richtmeyer &Morton 1967). One exception is the successful 
application of a fourth-order scheme in a plane two-dimensional flow field by 
Fromm (1969) in an attempt to curtail numerical-dispersion errors, which can be 
serious at high Reynolds number. Second-order differencing of the linear as well 
as the nonlinear terms of the vorticity-transport equation leads to dispersion 
errors which manifest themselves as spatial oscillations where high local gradients 
occur at high Reynolds number. Replacing the second-order differencing of the 
nonlinear terms by first-order upwind differencing (Courant, Isaacson & Rees 
1952) aids numerical stability by the introduction of artificial numerical damping, 
but at the same time reduces the accuracy. For flows of sufficiently limited Rey- 
nolds number, such a scheme using centred differences in all except the nonlinear 
terms generally provides a stable solution of reasonable accuracy. The use of 
upwind differencing for the nonlinear transport terms possesses the additional 
attribute that the physical transport of vorticity is maintained in the local 
direction of flow. 
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If 
Uf2  Oand U- 0 

U+ c 0 and U -  c 0 

W+ 2 Oand W- c 0 

W+<Oand W- 2 0 

W+<OandW-cO 

TABLE 1. The definitions of the second upwind difference parameters. The definitions are 
bmed on the signs o f  U* and W*, where U* = i ( Uij+ U,, ,  j) and W* = 9 (Wj+ w, 

In the difference formulation, vorticity at the node (&, 2,) in the primary 
system a t  time a&' is denoted by 72. Other variables are similarly defined. The 
difference scheme chosen to approximate (5) uses centred time differencing, 
centred space differencing for the diffusion terms, and second upwind differencing 
(Roache 1972a) or 'donor-cell' differencing (Gentry, Martin & Daly 1966) of the 
nonlinear transport terms. Furthermore, at the node (i, j )  where the difference 
equation is applied, the following Dufort-Frankel leapfrog substitution (Dufort 
& Frankel 1953; Fromm 1963) is made for 78 in the diffusion terms as well as in 
the nonlinear terms: 

The resulting difference formula is 

q$+l x (1 - aGi,) (1 + aGij)-lT?$-l + 2 4  1 + uG,,)-l{hNR[2R,( Uq)= + ( W V ) ~ ]  
+ 4&h+1,  , + ~ i - 1 ,  P) + W ~ r + i .  j - ~~-1,j) + ~ i . i + 1 +  7.2, i-11, (17 )  

T g  = iHT?$+l+T?f-l)* 

where 01 &'/ha8R, 

and Gq 2(1+4&)+h2/&+hN,(2RaUa+~,).  

The quantitites U,, W,, ( Uv)= and ( W T ) ~  are defined in table 1. The superscript is 
assumed to be n, by default, whenever it is absent. 

The enhanced stability of upwind differencing over central differencing of the 
transport terms is a result of the introduction of an artificial viscosity term in the 
numerical procedure (Roache 1972 b). Denoting the actual viscous diffusion term 
in (5) as D, and the artificial diffusion term effectively introduced by the numerical 
procedure as Di, Gillani (1974) has shown that 
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where the subscripts Y and 2 denote derivatives with respect to those co-ordi- 
nates. The ratio of artificial to real diffusion is a measure of the size of the numeri- 
cal damping error. The numerical damping error is proportional to the mean 
systolic cell Reynolds number hN,, and it grows as the flow accelerates. It is not 
possible to obtain a priori estimates of this error. 

Neutral static stability is ensured by the use of the Dufort-Frankel scheme. In 
the primary system, the dynamic stability criterion which restricts the size of 
6t' is (Gillani 1974) 

6t' < h2&/[2(1+4Y,)+(ha/Y,)+~~,(BB,IU,I + l&jl)]* (19) 

This stability restriction on the choce of 6t' becomes progressively more stringent 
as the flow accelerates, and is predominantly dictated by the magnitude of the 
flow term ZB+l?&l+ This term attains its maximum value where there is 
substantial radial flow, for example where the main flow diverges into the cavity 
and again where it converges back into the lumen. A pessimistic bound on 6t' is 
obtained by taking lU,( = = +Rrn along the line Bi = 1 = %, where Rrn 
represents the instantaneous value of the axial flow velocity averaged over the 
inlet cross-section. In  the computations, 6t' is decreased in steps as the flow 
accelerates, from an initial value of 0.0015 to a final value of 0.0007. 

The difference scheme described in (1 7) is a three-time-level formula character- 
istic of the Dufort-Frankel method. It requires the values of ?& as well as $, at 
a11 internal nodes in the start-up procedure. The initial condition of rest specifies 
vij only at  t' = 0. During the first time interval (6t' = 0-0015), a very thin boun- 
dary layer of finite vorticity will line the solid walls. The dimensionless thickness 
of this layer may be estimated as (vSt)*/a = (W/fl')* = 0.007. Since this 
distance of vorticity diffusion is much less than the smallest mesh spacing 
(h, = 0*02), it is safe to take qij = 0 a t  all primary and secondary interior 
nodes. 

The difference formulation of the primary stream-function equation (6) at 
interior nodes is obtained using centred space differences, and is expressed in the 
following form appropriate for iterative solution by successive over-relaxation 
(Young 1964) : 

&$+I) = + *Qo( 1 + 4%)-1 [4u, ([$I, j + &y;) - 2( 1 + 4%) [\$) 
+ gy,+1+ &!;A\ - h2B&5+1]. (20) 

The superscripts to the stream function E denote the iteration number, and Qo is 
the over-relaxation parameter. The term including r%+l is the source term made 
available at each node following the solution for the vorticity at a new time level. 
The optimum value of the parameter a,, giving fastest convergence was obtained 
by numerical experimentation. For the primary system, a, = 1.758 is optimum. 

At the beginning of the iteration procedure for each new time level, the starting 
solution @) must be provided. The following rule for generating this starting 
solution from the solution at  the previous time level is found to result in very 
rapid convergence : 

= (&j)n&n+l/&n. 



Time-dependent laminar $ow through a spherical cavity 113 

Each iteration procedure is interrupted every ten sweeps of the field to check for 
convergence. The procedure is terminated when the desired level of convergence 
is attained or when the limit of convergence imposed by single-precision round- 
off errors is reached. 

The difference equations corresponding to (7) and (8) are 

‘4, j+g (Ei,j+l-Eij)/h% W,+,  j a ‘(Eij-<i+l,j)/h (21) 

and 

Primary nodes within secondary regions are given special treatment. Specific 
finite-difference formulations are derived for the irregular stars. Vorticity at 
these primary nodes is first evaluated using the primary difference solution. At a 
later stage, when the vorticity solution at the same time level is completed for the 
interior as well as the boundary nodes in the secondary meshes, vorticity values 
at the primary nodes concerned are adjusted to match the more accurate 
secondary solution. This adjustment is based on a four-point area interpolation 
(Gillani 1974) using values at the secondary nodes of the cell containing the 
primary node. 

Boundary conditions 

Ti j  = h.-lr(u,j+g - q j - 4 1  - 2 W & , f  - w,-,,,)l.l (22) 

The axis of symmetry is a streamline on which the values of 6 and 7 are 

6; = ansin (jnndt‘), 7; = 0. 

At the inlet cross-section, the flow is axial and tij = <i,j-l. Inlet vorticity is 
computed according to its definition (22) after the flow solution is obtained at 
each new time level. At the exit, the flow emerges axially and continues to 
be axial. Hence 

ti, j+l = Ci, j, r~i,i+l = qi j .  

Similar boundary conditions hold at the inlet and at the exit in the secondary 
cylindrical systems. 

Along the solid walls, in all systems, 5, = 0. The wall vorticity is computed 
after the solution for 6 is completed in all systems. Using (14) along the straight 
walls and (15) along the curved walls and a t  the sharp corner, invoking the no- 
slip condition, we have 

in the secondary cylindrical and spherical systems, and 

vC, 5 = 26iw-1, jlh: RC-1, j 

VC, j = %&+I, j/h%!iw++, i 
in the toroidal systems around the corners. Bi, represents the radial distance from 
the axis of symmetry to the secondary node (i,j). According to the last equation, 
the vorticity is multi-valued at the sharp corner depending on which particular 
secondary radial ray of the local polar co-ordinate system is considered. Roache 
(1972a) considered seven different treatments of the wall vorticity a t  a sharp 
corner and concluded that “good accuracy near a sharp convex corner, and a 
fully satisfactory resolution of the question of separation in the vicinity of the 
sharp corner, will be achieved only by a local solution in polar co-ordinates 
centered on the sharp corner ”. Our experience bears out this remark. Following 

8 F L Y  78 
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the evaluation of wall vorticity a t  secondary nodes on the walls, simple linear 
interpolation between these values is used to determine wall-vorticity values a t  
the points of intersection of the primary mesh lines with the wall. 

The values of 7 and E at secondary nodes adjacent to the primary interior are 
obtained from the primary solution by a four-point area interpolation using the 
four nodes of the primary cell within which the secondary node in question is 
located (Gillani 1974). All secondary-secondary interfaces are in the vicinity of 
the corners leading into and out of the cavity. Figure 5 illustrates the manner in 
which 7 and 6 are evaluated along these interfaces, with specific reference to the 
interface between the secondary downstream toroidal and cylindrical systems. 
At the point b along the interface WB, is computed by simple linear interpola- 
tion between the values of vU and qc based on the assumption that vorticity 
changes uniformly from a to b to c along the grid lines parallel to the wall. &, on 
the other hand, is computed using the assumption that 

Thus, since tW = 0, we have [ b  M (tB/cA) ta. This extrapolation from a to b is in 
the direction of flow. 

Motion of the ZeaJEet 
The closed position of the leaflet is shown in figure 1, and corresponds to the 
condition a t  t‘ = 0. The total length of the leaflet is about 1.5a. At  closure, nearly 
a quarter of this length is along the co-apting leaflet surfaces at the axis. In  the 
analysis, the leaflet is assumed to behave like a thin, neutrally buoyant membrane 
which offers no resistance to fluid flow at early times in the acceleration phase. 
Leaflet motion is analysed only as long as such an assumption is valid. The leaflet 
contour is approximated by thirteen freely hinged rigid ‘rods’ of equal length. 
The fist of these rods is permanently hinged a t  one end of the valve ring a t  the 
sharp corner leading into the spherical cavity. The last three rods are initially 
coincident with the valve axis. Each joint along the leaflet contour is allowed to 
move as a local fluid particle except for the additional constraints that the chain 
of rods must remain hinged at the valve base and that each rod must remain the 
same length. The corresponding formulae for evaluating the displacement of 
each joint during each time interval of the finite-difference scheme have been 
used as derived by Gillani (1974). 

5. Experimental investigation 
The primary objective of the experimental investigation was a qualitative 

visualization of the unsteady development of the laminar separation wake in the 
spherical cavity of an axisymmetric acrylic model. The experimental apparatus 
is shown in figure 6. The spherical cavity is contained within the axisymmetric 
test section, the internal surface of which is polished. Nearly sharp corners exist 
at both ends of the cavity, and the inlet and exit, radii of the duct are equal 
(1.91 cm). The radius of the cavity is 1-37 times greater. The left ventricle is 
modelled by a pump cylinder with a moving piston driven by a cam designed to 
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FIGURE 6. Schematic drawing of experimental set-up. 1, test section with spherical cavity; 
2, inlet tract nozzle; 3, pump cylinder; 4, piston; 5, cam; 6, pointer (position indicator); 
7, tachometer generator ; 8, light source ; 9, collimator lens ; 10, parallel slits ; 1 I, fluid with 
suspended particles. 

deliver a forward sinusoidal pulse. The displacement of the piston is equal 
to that of a metal pointer (position indicator) which is attached to the piston 
assembly and which moves above the test section. The rate of displacement 
of the piston is monitored by a tachometer generator, and is recorded on a 
strip-chart recorder. A nozzle connecting the pump chamber and the test section 
represenfs the inlet tract to the valve. 

The fluid used in the model study was a mixture of water, glycerin and pluracol 
(a thick, highly viscous, water-soluble liquid) in the ratio 100.0: 19.0: 5-3. Sus- 
pended very homogeneously in this liquid mixture were spherical plastic beads 
ranging in diameter from 400 to 500,um. The specific gravity of the liquid and the 
beads was equal to that of blood (1.05). The kinematic viscosity of the liquid 
mixture was 0.098 S at 24 "C. 

An optical system consisting of a high-intensity mercury arc lamp (light source), 
a collimator lens and two narrow parallel slits provides illumination of the verti- 
cal plane through the axis of the test section. Photographs of the suspended 
plastic beads moving through the cavity in this vertical plane are taken by a 
camera mounted in front of the apparatus, level with the axis of symmetry. Only 
the tip of the position indicator moves in the illuminated plane, and casts a 
shadow below its position at the time the picture is taken. 

An exact matching of the similarity parameter BR is achieved in the numerical 
and experimental models by adjusting the rotation speed of the cam. The net 

8-2 
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FIGURE 7. Streamlines caloulated from the numerical solution. The values oft' for (a)-(f) 
are 0.015, 0.046, 0.069, 0.120, 0.174 and 0.1836. For each s tredine  plot, the values of 
5 can be listed in the alphabetical order in which the streamlines themselves are labelled. 
(a) E,, ..., 5. = 0.092, 0.075, 0.050, 0.025, 0.005. ( b )  &,, ..., 6, = 0.272, 0~200,0*125,0~050, 
0.005, 0.000. (c) E,, ..., &, = 0.405, 0.300, 0.200, 0.076, 0.010, 0.000, -0.002, -0.005. 

0.769, 0.500, 0200, 0.050, 0.000, -0.010, -0.050, -0.100, -0.005. (f) t,,, ..., 5, = 0.779, 
0.500, 0.250, 0.050, 0.000, - 0.005, - 0.060, - 0.090, 0.002, 0.006. 

( d )  &, ..., th = 0.635, 0.500, 0.300, 0.126, 0.020, 0.000, -0.040, -0.070. (e) &,,...,& = 
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FIUURE 8. Vorticity calculated from the numerical solution. (Three-dimensional plots are 
computer-generated.) The values of t' for (a)-(f) are 0.015, 0-046, 0.069, 0.120, 0.1740, 
0.1836, and the maximum values of 7 are 16-6, 60.2, 80.9, 139.4, 151.4, 141-0. 
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forward flow in the experimental model is 320 cm3, giving NR = 1096. This com- 
pares with the corresponding value of 1194 in the numerical model. The flows 
in the two models may thus be expected to be substantially similar. 

6. Results and discussion 
Numerical results 

Computations were carried out for 196 time intervals comprising the accelerating- 
flow phase from rest to peak systole (t’ = 0.2). Streamlines of flow for selected 
time levels are shown in figure 7. Three-dimensional computer-generated plots 
of vorticity at the corresponding times are shown in figure 8. Two distinct chrono- 
logical phases of flow are identified. Phase 1 lasts for values of t’ between zero 
and approximately 0.15, and is characterized primarily by the gradual develop- 
ment and strengthening of a well-defined annular vortex within the spherical 
cavity. Phase 2 occupies the remaining quarter of the time range studied. During 
phase 2, the appearance and growth of a secondary vortex pattern causes a 
gradual weakening of the primary vortex. The numerical solution remains stable 
throughout both phases. 

I n  the early stages of acceleration (t’ = 0.015), the flow is almost potential 
flow and closely follows the contour of the solid boundary. A small amount of 
vorticity is seen lining this boundary. In  the absence of any significant stretching 
or convection of vorticity at this early time, a striking degree of symmetry is 
observed in the flow between the upstream and downstream sides of the cavity. 
This symmetry soon breaks down following flow separation, which is first detected 
at t’ = 0.039. The separation occurs at or immediately behind the sharp convex 
corner, and the separation streamline delineates a small annular eddy (t’ = 0.045). 
Along this streamline, 6 = 0. 

As the flow accelerates, more energy is fed into the captive vortex across the 
free shear layer lining the major portion of the separation streamline, Conse- 
quently, the vortex grows in size, continuously pushing the stagnation point a t  
reattachment further downstream (t’ = 0.069-0.120). Progressively, the earlier 
symmetry of the flow within the cavity is replaced by the growing vortex on the 
upstream side and a relative crowding of the streamlines on the downstream side. 
Vorticity and wall shear stress grow conspicuously along the straight edges of the 
solid wall near the inlet and exit sections. At early times, the bending of the flow 
around the sharp corner into the cavity results in a local peak of wall vorticity at 
the sharp corner (t’ = 0.045). However, the gradual growth of a boundary layer 
along the straight wall on the inlet side combines with the general reshaping of 
the main flow, which accompanies the growth of the eddy, to cause a slightly 
divergent flow near the inlet wall. As a result, there is a small decrease in wall 
vorticity as the sharp corner is approached from the upstream side (t’ 2 0.120). 
Behind the sharp corner, the flow is reversed along the sinus wall and the wall 
vorticity is negative. Thus there is a discontinuous drop in the vorticity around 
the sharp corner, itself a point of singularity. 

Convective transport of vorticity from the upstream boundary-layer region 
near the sharp corner is seen to maintain a ridge of high vorticity along the free 
shear layer accompanying the separation streamline. Some of this vorticity then 
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diffuses towards the vortex core and helps to sustain the circulation. Obviously, 
the shear layer of concentrated vorticity cannot extend all the way to the re- 
attachment point, because the condition of zero shear at the stagnation point 
must be satisfied. Thus, as the stagnation point is approached, the streamlines 
on either side of the separation streamline diverge from it and, when the stagna- 
tion point is reached, proceed in opposite directions. A region of low shear there- 
fore exists in the vicinity of the reattachment, and wall vorticity and shear 
change sign as the stagnation point is passed. Past the stagnation point, the 
reversed streamline follows the sinus wall back towards the separation point. 
The streamline on the side of the main flow, on the other hand, continues forward 
past the reattachment point, turns towards the lumen and converges towards the 
smooth downstream corner. A region of increasing wall shear and wall vorticity 
accompanies it to the corner, where the wall experiences the highest shear of the 
flow. At t’ M 0.15, the vortex attains its maximum size and strength and occupies 
much of the cavity. 

According to the numerical solution, very conspicuous secondary develop- 
ments occur during phase 2 of the flow (t‘  > 0.15). As the reversed flow of the 
recirculating primary vortex approaches the upstream corner, it diverges from 
the curved wall and experiences an adverse pressure gradient and a growing 
boundary layer. At t‘ = 0.156, this reversed flow itself separates from the wall, 
giving rise to a secondary vortex whose circulation is clockwise, which is opposite 
to that of the primary vortex (t’ = 0.1740). 

The secondary vortex then grows as vorticity and energy are transferred to it 
from the parent vortex by molecular diffusion. A portion of the energy which the 
primary vortex derives from the main stream thus becomes diverted to the 
secondary vortex. At this stage in the flow cycle, however, the rate of increase of 
the kinetic energy of the main stream is small, and the amount of energy trans- 
ferred from the main flow into the circulating flow of the cavity is inadequate to 
sustain the growth of both the primary and the secondary vortices. Consequently, 
the growth of the secondary vortex is a t  the expense of the primary vortex. 

The secondary vortex starts only a short distance behind the sharp corner. As 
it grows, however, it  shifts away from the sharp corner and deeper into the cavity. 
In so doing, i t  pushes the primary vortex and changes its orientation from an 
inclined position (t’ = 0,120) to a position more parallel to the flow axis (t’ = 

0.1740). More significantly, however, the primary vortex core is pushed from the 
cavity centre increasingly towards the downstream corner. Such a relocation of 
the main eddy was observed in the studies of aortic-valve models by Bellhouse & 
Talbot (1969) at the corresponding time in the flow cycle. With the shift of the 
vortices to the right, a region of relative stasis consisting of a narrow tail-end of 
the primary vortex remains in the portion of the cavity immediately behind the 
sharp corner. Upon further transport of vorticity into this region from the up- 
stream boundary layer, a split develops in the main vortex which results in the 
birth of a small trailing vortex just behind the sharp corner (t’ = 0.1836). This 
new vortex has the same anticlockwise rotation as the primary vortex. 

The appearance of the new vortex at the base of the cavity occurs a t  t’ = 0.18. 
In  the final moments of the acceleration phase, the new vortex grows as a member 
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j =  1 18 39 
FIUURE 9. Selected radial profles of axial velocity component W from the numerical 

solution. . - ., t’ = 0.015; - - - -, 0.069; - - - ,0.120; 0000,0~200. 

of the split pair by directly feeding upon the main flow while its older sibling co- 
tinues to degenerate, and with it also the parasitic secondary vortex. The flow in 
much of the core region of the valve appears to remain almost exactly axial 
throughout the acceleration phase, particularly at higher flow rates. This result 
is consistent with the observations of Bellhouse & Talbot (1969) and of Bell- 
house (1969). 

The appearance of a secondary vortex after the separation of the reversed 
flow itself has been observed by Thoman & Szewczyk (1969), Son & Hanratty 
(1969), Honji & Taneda (1969) and Collins & Dennis (1973) for impulsively 
generated or uniformly accelerated flows over a cylinder, by Rimon (1969) for 
time-dependent flow over a sphere, by Fromm (1969) for flow through a diffuser, 
and by Honji (1975) for the starting flow down a step. According to Thoman & 
Szewczyk, “ the secondary vortex at first grows in size and splits the main vortex 
into two parts to form a second secondary vortex. The initial secondary vortex 
then moves to a higher angle and diminishes in size.” 

The numerical solution yields very clearly the course and shape of the separa- 
tion streamline. Owing to the use of the fine secondary meshes, the locations of 
the primary and secondary reattachment points are determined quite accurately, 
since by definition qw and T~ must be zero there. The location of the primary 
separation point is always shown to coincide with the sharp corner even though 
its precise location cannot be determined. Fort’ approximately less than 0.1, the 
separation streamline starts out concave to the main flow and the separation 
point during that time may be slightly to the back of the corner. After that time, 
location of the separation actually at the corner does appear to be the case. 
After the birth of the primary vortex, its reattachment length along the 
curved wall increases linearly with the instantaneous Reynolds number at the in- 
let until the secondary vortex appears. Subsequently, its forward progress slows 
down and the stagnation point actually recedes after the birth of the split pair. 
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A similar linear rate of translation of the stagnation point with increasing 
flow Reynolds number during a purely laminar flow regime has previously been 
observed in the case of the separation wake behind an abrupt expansion in a 
circular conduit (Macagno & Hung 1967; Back & Roschke 1972). The retreat 
of the reattachment point with increasing flow in an intermediate range of 
Reynolds number has also been observed experimentally in other separation 
flows (Back & Roschke 1972; Meisner & Rushmer 1963). Such a reversal is 
believed to indicate the beginning of laminar shear instabilities and a slow 
transition to turbulence (Back & Roschke 1972). Coincident with the retreat of 
the stagnation point, the split in the primary vortex continues and the primary 
separation streamline takes an increasingly wavy course. Also, for the first time, 
inflexions appear in the velocity profiles. Figure 9 shows radial profiles of the 
axial velocity component W a t  the inlet and exit cross-sections and at  a cross- 
section through the centre of the cavity. The profiles corresponding to t’ = 0.200 
a t  all three sections are inflected in the interior of the flow. According to the so- 
called point-of-inflexion criterion of Rayleigh (191 3), an inflected velocity 
profile is a necessary condition for the occurrence of instability. Tollmien (1  936) 
later succeeded in showing that it also constitutes a sufficient condition for the 
amplification of disturbances. The simultaneous occurrence of the splitting of the 
primary vortex, the increasingly wavy course of the separation streamline, the 
retreating of the primary reattachment point, and the inflecting of the velocity 
profiles all indicate the onset of an instability in the flow during the final moments 
of the acceleration phase. In  figure 9, the developing velocity profiles a t  cross- 
sections of the straight portions of the duct also exhibit the familiar peaking of the 

FIUURE 10. Wall vorticity distribution at  selected times from the numerical solution. 
..., t’ = 0.015; - - - -, 0.45; x x x X ,  0.069; ----, 0.120; 0000, 0.200. The sharp 
corner is located at  z/A = 8,  while the smooth corner is a t  e/A = 37. 



122 N .  V .  Gillani and W.  M .  Swansom 

t' 
FIUTJRE 11. Unsteady wall vorticity 7, and wall shear stress 7, at the corners 

of the spherical cavity from the numerical solution. 

velocity near the wall, a characteristic of pulsatile flow in arteries. The profiles at  
the section through the cavity indicate regions of reversed flows of the primary 
vortex (t' = 0.120) and also of the secondary vortex (t' = 0.200). 

Figure 10 shows the distribution of vorticity along the solid wall at five time 
levels during the acceleration phase. The discontinuity of vorticity at  the sharp 
upstream corner and the sharp peak of vorticity a t  the smoothed downstream 
corner are the most obvious features. Vorticity and shear-stress behaviour a t  the 
two corners during the acceleration phase are highlighted in figure 11. The 
highest wall shear stress is attained a t  the downstream corner just prior to the 
appearance of the secondary vortex. Assuming this maximum level of shear stress 
of about 325 dynes/cma to be an estimate of the peak shear experienced by the 
endothelial layer of a normal aortic valve during each heart beat, it may be con- 
cluded that, under normal physiological conditions, shear stress is insufficient to 
cause significant endothelial damage. Studies of endothelial damage due to high 
shear have shown that marked deterioration of the endothelial surface occurs 
when it  is exposed to shear stress in excess of 380 f 85 dyneslcmz for periods of 
about one hour (Fry 1968). 

The results of computations of the motion of the meridional section of the 
leaflet during early systole are shown in figure 12. During early flow acceleration, 
the leaflet is pushed forwards and upwards. The co-aption length a t  the axis de- 
creases gradually until the leaflet finally lifts off the axis a t  t' = 0.036. Near that 
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FIGURE 12. Vdve-leaflet motion during early systole. ---, t' = 0 ;  - - a ,  t' = 0.016; 
- - -, t' = 0.030; -, t' = 0.045. 

time, the base of the leaflet just becomes level with the upstream aortic wall. 
The present analysis of leaflet motion is judged to be a valid simulation of the 
real case only up to about t' = 0.045. In  the real valve, each of the three 
leaflets is firmly attached to the valve ring as well as to the sinus walls. The 
constraints on leaflet motion are three-dimensional and the assumption of an 
axisymmetric leaflet is no longer valid. Also, as the supporting structure of the 
leaflets restricts their free motion, the assumption of negligible impedance to the 
flow becomes increasingly questionable. 

Validity of the numerical results 
The solution obtained is numerically stable and convergent. The size of the trun- 
cation error is determined largely by the numerical damping arising from the 
upwind differencing of the nonlinear terms of the vorticity-transport equation. 
The second upwind differencing is of a quasi-second-order accuracy. The ratio of 
the artificial and real diffusion terms as given by (1  8) may be expected to provide 
the best possible estimate of the numerical damping error, which is most serious 
near peak-flow conditions. Applying (1 8) to the numerical solution at t' = 0.1740 
in the region outside the secondary meshes, i.e. in the valve lumen and in the 
middle of the spherical cavity, it  is seen that Di/D, is less than 0.1 at all such 
primary nodes. Equation (1 8) applies only to the primary mesh. In  the secondary 
meshes, the accuracy may be expected to be higher because the cell Reynolds 
number is smaller, because the size of the real diffusion is highest in the secondary 
regions, and because both velocity components are generally smaller in the sec- 
ondary regions. 
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Comparison of numerical and experimental results 

In  the experiment, the duration of the acceleration to peak flow was only 0.25 s 
(t’ = 0.2). I n  such a short time, a clear photographic resolution of both chrono- 
logical phases of flow could not be achieved. However, photographs made over the 
range of phase 1 (t’ < 0.15) clearly reveal the development of the primary vortex 
in the spherical cavity of the experimental model. 

Figure 13 (plate 1) shows a comparison between the flow pattern obtained in 
the numerical solution at t’ = 0.120 and that revealed by a photograph made in 
the shutter-open time corresponding to the period t’ = 0.120 to 0,133. The 
starting time and the exposure time of the photograph are estimated directly from 
the location and length of the streak marked by the motion of the position indi- 
cator seen near the top of the photograph. The exposure time estimated in this 
manner agrees with the setting of +5 s on the camera. A metal wire bent in the 
shape of the valve Ieaflet contours in closed position is also seen in the photo- 
graph. This wire frame lies in the vertical illuminated plane through the 
valve centre-line and provides a convenient object upon which to focus the 
camera. 

The photograph is marred slightly in the cavity region by the interfering 
presence of bright spots superimposed upon the flow pattern revealed in the 
background. The bright spots correspond to particles which do not coincide 
exactly with the iUuminated central plane of flow. The general outline of the flow 
pattern is defined sufficiently well to show the vortex and the course of the 
separation streamline in the cavity. The size and orientation of the vortex, the 
location of the reattachment point, and the shaping of the streamlines of the 
main flow by the existence of the vortex are all features which are very closely 
simulated in the numerical solution. A similar high level of correlation is found to 
exist between the experimental and numerical flow patterns for other discrete 
times ranging over the entire phase 1 of flow during which the primary vortex 
develops from its birth to full maturity. 

7. Conclusion 
A general numerical method has been developed for the solution of the un- 

steady flow of a viscous incompressible fluid through axisymmetric duct geo- 
metries for which the variable axial contour may be described analytically in a 
piecewise-continuous manner by orthogonal co-ordinate systems. The disconti- 
nuities may include sharp corners. The method is applied specifically to simulate 
the flow through a spherical cavity approximating the geometry of the aortic 
root. 

The numerical method uses finite-difference approximations of the vorticity 
and stream-function equations, and employs a hybrid-mesh design which permits 
a finer resolution of the flow near the solid walls where the gradients are high and, 
at the same time, maintains an overall economy of computer usage. The numerical 
scheme for the vorticity equation in each mesh subsystem uses central differences 
for the time and space derivatives except that second upwind differencing was 
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used for the inertia terms. A Dufort-Frankel leapfrog approximation is also 
applied. The resulting scheme gives a stable solution with little loss of accuracy 
due to numerical damping. The elliptic stream-function equation is solved by 
optimized successive over-relaxation iterations. Guidelines are developed for the 
successful matching of flow variables at the interfaces between the hybrid mesh 
subsystems, and for the treatment of flow around a sharp corner. 

The numerical results indicate, in detail, the birth and development of an 
annular vortex within the cavity as the flow accelerates from rest. The vortex 
grows to occupy most of the cavity. These results are in good agreement with 
observations made in an experimental flow-visualization study. The numerical 
simulation further yields detailed information about the emergence of secondary- 
flow features within the cavity, and about their role in a gradual degeneration of 
the primary vortex and in an apparent onset of physical instabilities. An accurate 
determination of the location of the reattachment stagnation point, a matter of 
significant importance in problems of enhanced heat transfer in the reattach- 
ment region, is made possible by the hybrid-mesh design. The solution also pro- 
vides the spatial and temporal distribution of wall shear stress. Maximum shear 
levels attained and the time for which they persist are not judged sufficient to 
cause endothelial damage under the normal physiological conditions con- 
sidered. 

The work reported here was supported by the National Heart and Lung 
Institute of NIH under Grant no. HE-13803. 
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FIGURE 13. Comparison of numerical and experimental results. (a) Numerical plot of 
streamlines for t' = 0.120. ( 6 )  Photograph exposure time corresponds to the period from 
t' = 0.120 to 0.133. 

(Facing p .  128) 




